1. A car has six forward gears.

The fastest speed of the car

- in 1st gear is 28 km h⁻¹
- in 6^{th} gear is 115 km h^{-1}

Given that the fastest speed of the car in successive gears is modelled by an arithmetic sequence,

(a) find the fastest speed of the car in 3rd gear.

(3)

Avithmelic Sequence:
$$a = a + (n-1)d$$

$$a = first / initial term (28 kmh²)$$

$$a = 28, a = 115$$

$$d = Common difference between terms.$$

=>
$$06 = 115 = 28 + (6-1) \cdot d$$

=> $5d = 115 - 28$ => $d = 115 - 28 = 17.4$ 1)

Given that the fastest speed of the car in successive gears is modelled by a geometric sequence,

(b) find the fastest speed of the car in 5th gear.

(3)

Geometric Sequence:
$$Q_n = Q_1^{n-1}$$

$$Q_n = f_{int} / f_{initial} \text{ term}$$

$$Q_n = f_{initial} \text{ term}$$

$$Q_n = f_{initial} \text{ term}$$

 $Q_6 = 115 \text{ kmh}^{-1}$ and $Q = 28 \text{ kmh}^{-1}$

=>
$$Q_6 = 115 = 28 \cdot \Gamma^5$$

=> $\Gamma^5 = \frac{115}{28} = \Gamma = \left(\frac{115}{28}\right)^{1/5} = 1.3265...$ 1)

2. In an arithmetic series

- the first term is 16
- the 21st term is 24
- (a) Find the common difference of the series.

(2)

(b) Hence find the sum of the first 500 terms of the series.

(2)

$$24 = 16 + 20d$$

b)
$$S_n = \frac{1}{2} n \left[2a + (n-1)d \right]$$
 OR use $S_n = \frac{1}{2} n (a+1)$

$$S_{500} = 150(32 + 199.6)$$
 L= 215.6

$$S_{500} = 250 \times 231.6$$
 $S_{500} = \frac{1}{2} \times 500 (16 + 215.6)$

